¥

REPORT DOCUMENTATION PAGE

Form Approved
OFPM No

AD-A262 88¢S

1215 Jetloson Dav.s Highway S.uoe 1703 Arsngiur VA

T EE
AE il

IPORT

A Lk ANW

Validation Summary Report: TLD Systems, Ltd., TLD RISC6000.
MIL-STD-1750A Ada Compiler System, Version 2.9.0, under AlX, Version
3.1 (Host) to AIX, Version 3.1 running TLDmps (Target), 920319W1.11241

S FUNDING

6.
Wright-Patierson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND

Ada Validation Facility, Language Control Facility ASD/SCEL

Bidg. 676, Rm 135

Wright-Patterson AFB, Dayton, OH 45433 Y

8 PERFORMING
ORGANIZATION

AVF-VSR-527-0392

S SPONSORING/MONITORING AGENCY NAME(S) AND
Ada Joint Program Office

United States Department of Defense
Pentagon, Rm 3E114

Washington, D.C. 20301-3081

10 SPONSORINGMONITCRING
AGENCY

77, SUPPLEMENTARY

723, DISTRIBUTION/AVAILABILITY
Approved for public release; distribution unlimited.

12b DISTRIBUTION

13 (Maximum 200

TLD Systemns, Ltd., TLD RISC6000/MIL-STD-1750A Ada Compiler System, Version 2.9.0, IBM RISC System

IBM RISC System 6000, Model 530 under AlX, Version 3.1 (Host) to IBM RISC System 6000, Model 530

under AlX, Version 3.1 running TLDmps MIL-STD-1750A Multiple Processor Simulator under TLDrix Real Time

Executive, Version 1.0.0 (Target), ACVC 1.11.

-

98 3 30 o¢sa

93-06531

lll!\llllll\\ IR

14. SUBJECT

Ada programming language, Ada Compiter Val. Summary Report, Ada Compiter Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A,

15. NUMBER OF

@

o average 1 NOur PO ERPONES OCIKENgG 1he Lme 1oi FBVOWIAQ \OSHLCIONE BBACRNY GX8Layg CAIA BULCes Gathe ng
maton Send comments regaroing 1ns burGen #shimate O Bny OIher ALHEC G Ihig O0-eCHon B T IoIm RLON . AILONG
arvice, Drectorate tor intormaton Operatans ano Repors

JHwe of Manag ament and Buaget. Wasringron. OC 205073

3 REPORT TYPE AND CATES
Final: 30 April 1992

16, PRICE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION CLASSIFICATION

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN Standard Form 298, {(Rev 2-89)

Prescnbed by ANS! St

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 19 March 1992.

Compiler Name and Version: TLD RISC6000,MIL-STD-1750A Ada Compiler
System, Version 2.9.0

Host Computer System: IBM RISC System 6000, Model 530,
under AIX, Version 3.1

Target Computer System: IBM RISC System 6000, Model 538,
under AIX, Version 3.1 running TLDmps
MIL-STD-1750A Multiple Processor
Simulator,
under TLDrtx Real Time Executive, Version 1.0.0

Customer Agreement Number: 91-11-14-TLD

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, validation Certificate
920319w1.11241 is awarded to TLD Systems, Ltd. This certificate expires on
1 June 1993.

This report has been reviewed and is approved.

Accesion For

: NTIS CRAG k
OTIC TAls i

[IRAS]

Ada Validation Facility

Steven P. Wilson p.a?;:iz,, \J

Technical Director Jucht el

ASD/SCEL

Wright-Patterson AFB OH 45433-6503 By
Dist ibution]

Avaiiability Codes

Availl andfor
sz rganization Dist Special
Director, ter and Software Engineering Division
Institute for Defense Analyses .
Alexandria VA 22311 H./

Gy Ll

a Joint Program Office
Dr. John Solomond, Director

Department of Defense tﬂ!c
Washington DC 20301 QUKLTTTT*@mT.NM

AVF Control Number: AVF-VSR-527-0392
30 April 1992
§1-11~14-TLD

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 920319wl1.11241
TLD Systems, Ltd.
TLD RISC6000/MIL-STD-1750A Ada Compiler System, Version 2.9.0

IBM RISC System 6000, Model 530 under AIX, Version 3.1 =>

IBM RISC System 6000, Model 530 under AIX, Version 3.1

running TLDmps MIL-STD-1750A Multiple Processor Simulator

under TLDrtx Real Time Executive, Version 1.0.0

Prepared By:
Ada validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

f——'——'

8 213542543 TLD Swstems Ltg. EY-@a ST 141k Lo
S R

DECLARATION OF CONFORMANCE

customer: TLD Systems, Ltd.

Ada Validation Pacility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
ACVC Version: 1.11

Ada Implemencation:

Compiler Name and Version: TLD RISC6000/MIL-8TD-1750A Ada Compiler Systam,
version 2.9.0

Host Computer System: IBM RISC System 6000, Model 530, AIX, Version 3.1
Target Computer System: IBM RISC System 6000, Model 530, AIX, Version 3.1

running TlDmps MIL_STD_1750A Multiple Processor
Simulator, TLDrtx Real Time Executive, Version 1.0.

Customer’s Declaration

I, the undersigned, vrepresenting TID Systems, Ltd., declare that TLD
Systems, Ltd. has no Xknowledge of deliberate deviations from the 2Ada
Language Standard ANSI/MIL-STD-1815A in the implementation listed in this

declaration executing in the default mode. The certificates shall be
awardad in TLD Systems, Ltd.’'s COIpPOTAte name.
AT

-/’q (-~ f.-—-———

Z\& - Date: 29 February 1992

7LD Systems, Ltd.
Terry L. Dunbar, President

b b s

CHAPTER

[%3

CHAPTER

w

APPENDIX A

APPENDIX B

APPENDIX C

W B

[N S0 o)
PR
W B

(Ve R VY]
W o

TABLE OF CONTENTS
INTRODUCTION

REFERENCES.
ACVC TEST CLASSES . .
DEFINITION OF TERMS .

USE OF THIS VALIDATION SUMMARY REPORT .

IMPLEMENTATION DEPENDENCIES

WITHDRAWN TESTS .
INAPPLICABLE TESTS.
TEST MODIFICATIONS.

PROCESSING INFORMATION
TESTING ENVIRONMENT .

SUMMARY OF TEST RESULTS .
TEST EXECUTION.

MACRO PARAMETERS

COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard {AdaB3} using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms wused in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national 1laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act” (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[AdaB83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and IS0 8652-1987.

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UGBS]) Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSEC, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegai by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG83}).

In order to pass an ACVC an Ada implementation must process each test of

the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,

Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user—designated programs; performs
user—designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter—connected units. '

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

INTRODUCTION

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI MIL-STD-1815A-1983 and IS0 8652-1987. Citations from
the LRM take the form "<section>.<(subsection>:<paragraph>."

S-oftware that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possibile.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C355081 355083
C35508M C35508N C35702Aa C35702B B41308B C43004A
C45114a C45346A C45612A C45612B €45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A €98003B BA2011A
CB7001A CB7001B CB7004A CCl223A BC1226A CC1226B
BC3009B BD1BOZ2B BD1BO6A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A Cb2a41A CD2A41E CD2AB7A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE21198B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS .

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format Al-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

IMPLEMENTATION DEPENDENCIES

The following 285 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..2 (21 tests)
C45241F..Y {20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F.,Z (21 tests)
C45524F..2 (21 tests) C45621F..2 (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

The following 21 tests check for the predefined type SHORT INTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B 453048 C45411B
C45412R C45502B C45503B C45504B C45504E
C45611B C456138 456148 C45631B C45632B
B52004E C55B07B B55B09D B86001V €86006D
CD7101E

C35404D, C45231D, BB6001X, CB6006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT INTEGER; for this implementation, there is no such type.

C35713B, (454238, BB6001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713D and B860012 check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45531M..P and <C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45536A, C46013B, C460-.B; C46033B, and C46034B contain length clauses
that specify values for ’'SMALL that are not powers of two or ten; this
implementation does not support such values for ’SMALL.

C45624Aa..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implcomentation, MACHINE OVERFLOWS is TRUE.

2-2

IMPLEMENTATION DEPENDENCIES

D64005F..G (2 tests) use 10 levels of recursive procedure calls
nesting; this level of nesting for procedure calls exceeds the
capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLiNLC
for procedures and functions; this implementation does not support
pragma INLINL.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does
not support decimal ‘SMALLs. (See section 2.3.)

CD2Aa84A, CD2A84E, CD2A84I..J (2 tests), and CD2AB840 use length clauses
to specify non-default sizes for access types; this implementat.ion
does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files (see Section 2.3 regarding CE3413B):

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D {2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411Aa CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302a CE3304A CE3305A CE3401A
CE3402a EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3403B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411cC
CE3412a EE3412C CE3413A..C (3) CE3414Aa
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A.:E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) <CE3805A..B (2)

IMPLEMENTATION DEPENDENCIES

CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2,

CE2103A, CE2103B, and =3107A use an illegal file name in an attempt to
create a file and expect NAME ERROR to be raised; this implementation does
not support external files and so raises USE ERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were reqguired for 1339 tests.

The following tests were split into two or more tests because this
implementation did not report th= vioclations of the Ada Standard in the way
expected by the original tests.

B44004D ES59001E B73004B BAI001A

C34009D and (340037 were graded prssed by Evaluation Modification as
directed by the AVO. These tests che.k that 'SIZE for a composite type is
greater than or equal to the sum of its components’ ‘SIZE values; but this
issue is acdressed by AI-00825, which ha. n~* been considered; there is not
an obvious interpretation. This implementation represents array components
whose length depends on a discriminant with a default value by implicit
pointecrs into the heap space; thus, the 'SIZE of such a record type might
be less than the sum of its components ’SIZEs, since the size of the heap
space that is used bv the varying-length array components is not counted as
part of the ’SIZE of the record type. These tests were graded passed given
that the Report.Result output was "FAILED" and the only Report.Failed
output was "INCORRECT 'BASE’SIZE", from line 195 in C34009D and line 193 in
C340097.

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT’LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. LRM 3.5.7:12).

C83030C and CB6007A were graded passed by Test Modification ac ditected by
the AVO. These tests were modified by inserting "PRAGMA ELABORATE
(REPORT);" before the package declarations at lines 13 and 11,
respectively. Without the pragma, the packages may be elaborated prior to
package Report’s body, and thus the packages’ calls to function
REPORT.IDENT INT at lines 14 and 13, respectively, will raise
PROGRAM ERROR.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures,
Length Check or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA),
which use the generic procedure Unchecked Conversion. This implementation
rejects instantiations of Unchecked Conversion with array types that have
non-static index ranges. The AVO ruled that since this issue was not

2 4

IMPLEMENTATION DEPENDENCIES

adcressed by AI-00590, which addresses required suppert for
Unchecked Conversion, and since AI-00590 is considered not binding under
ACVC 1.17, the support procedures could re modified to remove the use of
Unchecked Conversion. Lines 40..43, 50, and 56..58 in LENCHECK and lines
42, 43, and 58..63 in ENUMCHEK were commented out.

CD1009A CD10091 CD100SM Cp1009v CD1009W CD1CO3A
CD1C04D CD2A21A..C CD2A223 CD2A23A. .8 CD2A24A CD2A31A..C
*CD2AB1A CD3014C TD3014F Cp3015C CD3015E..F CD3015H

CD3015K CD3022A Ch4061A

*CD2A81A, CD2A81B, CD2A81E, CD2A83A, <CD2A83B, CD2A53C, and CD2AB3E were
graded passed by Test Modification as directed by the AVO. These tests
check that operations of an access type are not affected if a ‘SIZE clause
is given for the type; but the standard customization of the ACVC allows
only a single size for access types. This implementation uses a larger
size for access types whose designated object is of type STRING. The tests
were modified by incrementing the specified size SACC_SIZE with '+ 327,

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external
file. This is acceptable behavior because this implementation does not
support external files (cf. AI-00332).

CE3413B was graded inapplicable by Evaluation Modification as directed by
the AVO. This test includes the expression "COUNT'LAST > 150000", which
raises CONSTRAINT ERROR on the implicit conversion of the integer literal
to type COUNT since COUNT’'LAST = 32,767; there is no handler for this
exception, sc test execution is terminated. The AVO ruled that this
behavior was acceptable; the AVO ruled that the test be graded inapplicable
beczuse it checks certain file operations and this implementation does not
support external files.

Many of the Class A and Class C (executable) test files were combined into
single procedures ("bundles") by the AVF, according to information supplied
by the customer and guidance from the AVO. This bundling was done in order
to reduce the processing time-—compiling, linking, and downloading to the
target. For each test that was bundled, its context clauses for packages
Report and (if present) SYSTEM were commented out, and the modified test
was inserted into the declarative part of a block statement in the bundle.
The general structure of each bundle was:

-

IMPLEMENTATION DEPENDENCIES

WITH REPORT, TEXT IO, SYSTEM;
PROCEDURE <BUNDLE NAME> IS

—-- repeated for each test

DECLARE

<TEST FILE> [a modified test is inserted here, ...]
BEGIN

<TEST NAME); [... and invoked here]

EXCEPTION —test is not expected to reach this exception handler
WHEN OTHERS => REPORT.FAILED("unhandled exception '};
REPORT.RESULT;
END;
TEXT IO.NEW_LINE;

- [... repeated for each test in the bundle]

TEXT 10.PUT LINE ("GROUP TEST <BUNDLE NAME> COMPLETED");
END <BUNDLE NAME>;

The 1293 tests that were processed in bundles are listed below; each bundle
is delimited by ’<’ and ">’.

<A21001A A22002A A22006B A26004A A26007A A27003A A27004A
A29002A A29002B A29002C A29002D A29002E A29002F A29002G
A29002H A29002I A250023 A29003A A2A031A> <A32203B A32203C
A32203D A33003A A34017C A35101B A35402A A35502Q A35502R
A35710A A35801A A35801B A35801F A35902C A38106D A38106E
A38199A A39005B A39005C A39005D A39005E A39005F> <A39005G
AS4B01A A54B02A A55B12A ABSB13A AS5B14A A62006D A71002A
A71004A A72001A A730011 A73001J A74105B A74106A A74106B
A74106C A74205E A74205F> <A83009A A83009B A83041B AB3041C
AB83041D AB3A02A AB3A02B AB3A06A AB83A08A A83CO1C A83C01D
A83CO1E A83CO1F A83C01G A83C01H A83COlI A83C0lJ A85007D
AB5013B AB87BS9A> <AB7006A AC10158 AC3106A AC3206A AC3207A>
<AD1AOlA ADIAO1B ADIDOlE AD7001B AD7005A AD7101A AD7101C
AD7102A AD7103A AD7103C> <AD7104A AD7203B AD7205B> <C23001A
C23003A C23006A €24002A C24002B C24002C C24003A C24003B
C24003C C24106A C24113a C24113B C24113C C24113D C24113E>
<C24201A C24202Aa C24202B. C24202C C24203A C24203B C24207Aa
C24211A C25001Aa €25001B C25003A C25004A C26002B C26006A>
<C26008A C27001A C2A001a C2A001B C2A001C C2A002A C2A006A
C2A008A C2A009A C2A021B> <C32107A C32107C C32108A (C32108B
C32111A C32111B> <C32112a C32112B (C32113A> <C32114a C32115A
C32115B> <C32117A C34001A (C34001C C34001D C34001F C34002A
C34002C C34003A C34003C> <C34004A C34004C C34005A €34005C>
<C34005D C34005F C34005G C34005I> <C34005J (C34005L C34005M
€340050> <C34005P C34005R C34005S C34005U C34006A C34006F
C34006G C34006J> <C34006L C34007A C34007D C34007F C34007G>
<C340071 (C34007J C34007M (C34007P> <C34007R C340075> <C34009A
C34009F <34009G C€34009L C34011B (C34012A C34014A C34014C>

2-6

IMPLEMENTATION DEPENDENCIES

<C34014E C34014G C34014H C34014J3 C34014L C34014N C34014P
C34014rR C34014T> <C34014U C34014w 34014y C34015B 340168
C34018A C35003A C35003B C35003D C35003F C35102A C35106A
C35404A C35404C> <C35503A C35503B €35503C C35503D C35503E
C35503F C35503G C35503H C35503K> <C35503L 355030 (C35503p
C35504A C35504B C35505A C35505B C35505C> <C35505D C35505E

C35505F C35507A C35507B> <C35507C C35507E C35507G C35507H
C355071 C35507J3> <C35507K C35507L> <C35706A C35706B C35706C
C35706D C35706E> <C35707A C35707B C35707C C35707D C35707E

C35708A C35708B C35708C C35708D C35708E> <C35711A C35711B
C35712A C35712B (C35712C C35713A C35713C> <C35801D €35802A
€35802B (C35802C (C35802Dp C35802E> <C35902A (C35902B C35902D
C35904A (C35904B C35A02A C35A03A C35A03B C35A03C C35A03D>
<C35A03N C35A030 C35A03P> <C35A03Q C35A04A C35A04B C35A04C>
<C35A04D C35A04N> <C35A040 C35A04P> <C35A04Q C35A05A C35A05D
C35A05N> <C35A05Q C35A06A C35A06B> <C35A06D C35A06N C35A060>
<C35A06P C35A06Q C35A06R C35A06S C35A07A C35A07B C35A07C>
<C35A07D C35A07N C35A070 C35A07P C35A07Q C35A08B C36003A>
<C36174A C36180A C36202A C36202B C36202C C36203A C36204A
C36204B C36204C> <C36205A C36205B C36205C C36205D C36205E
C36205F C36205G C36205H> <C362051 C362053 C36205K C36301A
C36301B C36302A C36303A C36304A C36305A> <C37002A C37003A
C37003B C37005A C37006A C37007A C37008A C37008B> <C37008C
€37009A C37010A C37010B €37012A C37102B C37103A C37105Aa
C37107A C37108B (C37206A C37207A C37208A C37208B C37209A
C37209B (C37210Aa> <C37211A (C37211B C37211C C37211D C37211E
C37213a (C37213B C37213C (C37213D> <C37213E C37213F C37213G
C37213H> <C372133 C37213K C37213L C37214A> <C37215A C37215B>

<C37215C C37215D C37215E C37215F C37215G C37215H C37216A
C37217A C37217B C37217C> <C37304A C37305A C37306A C37307A
C37309A C37310A C37312A (C37402A C37403A> <C37404A C37404B
C37405A C37409A C37411a C38002A C38002B C38004A C38004B
C38005A (€38005B (C38005C (C38006A (C38102a C38102B (C38102C
C38102D C38102E C38104A C38107A C38107B> <C38108A (C38201A
C38202A C39006A C39006B C39006D C39006E C39006G C39007A
C39007B C€39008A C39008B C39008C> <C41101D C41103A C41103B
C41104A C41105A C41106A C41107A C41108A C41201D C41203A
C41203B> <C41204A C41205A C41206A C41207A €41301A C41303Aa
C41303B C41303C C41303E C41303F C41303G C413031 C41303J
C41303K C41303M C41303N C413030 C41303Q C41303R (C41303s
C41303U C41303v C41303Ww C41304A> <C41304B C41306A C41306B
C41306C C41307A C41307C C41307D C41308A C41308C €41308D
C41309A> <C41320A C41321A° C41322A C41323A C41324A C41325A
C41326A C41327A C41328A> <C41401A C41402A C41403A C41404A
C42005A C42006A C42007A C42007B> <C42007C C42007D C42007E
C42007F C42007G C42007H C42007I> <C420073 C42007K C43003A
C43004B C43004C C43103A C43103B C43104A> <C43105A 431058
C43106A C43107A C43108A C432042 C43204C C43204E C43204F>
<C43204G C43204H C43204I C43205A C43205B C43205C C43205D
C43205E C43205F C43205G C43205H C432051 C432053 C43205K
C43206A C43207A C43207B C43207C> <C43207D C43208A (C43208B
C43209A C43210A C43211A C43212A C43212C C43213A> <C43214A
€43214B C43214C C43214D C43214E C43214F C43215A C43215B
C43222A> <C43224A C44003A C44003D C44003E C44003F C44003G

2~7

IMPLEMENTATION DEPENDENCIES

C45101A C45101B C45101C C45101E
C45101K C45104A C45111A C45111B
C45112A C45112B C45113A> <C45114B
C45122D C45123A C45123B C4E1230>
C45202B C45210A C45211A C45220A
C45220E C45220F C45231A (452310
C45241B (C45241C C45241D C45241E>
C45252A (C45252B C45253A C45262A>
C45274B C45274C C45281A C45282A
C45304A C45304C> <C45321A C45321B
<C45323A (C45331A C45331D C45332A
C45345A (C45345B C45345C C45345D>
C45347D C45411A C45411C C45411D
C45421A C45421B C45421C C45421D
C45502A C45502C C45503A C45503C>
C45504F> <C45505A C45521A C45521B
<C45523A C45524A C45524B €45524C
C45532B C45532C C45532D C45532E
C455321 (455323 C45532K C45532L>
C45613A C45613C C45614A C45614C
C45621D C45621E> <C45622A C45624A
C45632A C45632C C45641A (C45641B
<C45652A C45662A C45662B C45672A
C46012C> <C46012D C46012E> <C46013A
C46024A C46031A C46032A C46033A>
C46043B> <C46044A C46044B C46051A
C46053A C46054A C47002A C47002B
C47004A C47005A C47006A C47007A>
C48004A C48004B C48004C C48004D
C48005B C48005C €48006A C48006B>
C48008A C48008B C48008C €48008D
C48009D C48009E C48009F C48009G>
C48010A C48011a C48012a C49020a
C49022C C49023A C49024A C49025A
C4n006A C4A007A C4A010A C4A010B
C4a012B C4A013A C4A013B C4A014A>
C52001B C52001C C52005A C52005B
C52005F> <C52007A C52008A C52008B
C52011A C52011B C52012A C52012B
C52103F C52103G C52103H C52103K
C52103Q C52103R C52103s (C52103X
C52104F> <C52104G C52104H C52104K
C52104Q C52104R C52104X- (C52104Y>
C53006A C53006B C53007A C53008A
C54A07A C54A11A C54Al13A C54Al3B
C54A23A C54A24A CB54A24B C54A26A
C54A42B C54A42C (C54a42D C54A42E
C55B04A C55B05A C55B06A C55B06B
C55B10A C55B11A C55B11B C55B15A
C55C02B C55C03A C55C03B C55D01A
C57004n C57004B €57004C C57005A>
C58004D C58004F C58004G C58005A
C58006B C59001B C59002A C59002B
C61010A C62002A C62003A C62003B

2-8

C45101G
C45111¢>
€45122A
<C45201a
452208
<C45232a
<C45242Aa
<C45272A
C45282B
C45321¢C
€45342a
<C45347Aa
C45412a
C45421E>
<C45504a
C45521C
C45524D
C45532F
<C45534A
C45621a
C45624B
C45641C
C46011Aa
C46014A
<C46041A
£46051B
C47002C
<C47008A
C48004E
<C48007A
C48009A
<C48009H
C49021a
C49026A>
C4A010D
<C51002A
€52005C
C52009a
€52013A>
€52103L>
€52104A
C52104L
<C53004B
C54a03a
C54A13C>
C54a27a
C54n42F
C55B07A>
cssBlea
C56002A
<C58004Aa
C58005B
€59002C>
C62004A

C45101H C451011
<C45111D C45111E
c45122B C45122C
C45201B C45202Aa
C45220C C45220D
C45232B C45241Aa
C45242B C45251Aa
C45273a (C45274Aa
C45291A C45303A
C45321D C45321E>
C45343A C45344A
C45347B C45347¢C
C45412C> <C45413A
<C45423A C45%431a
C45504C C45504D
C45521D C45521E>
C45524E> <C45532a
C45532G C45532H
C45611a C45611C
C45621B C45621C
€45631A C45631C
C45641D C45641E>
C46012A C46012B
C46021a C46023Aa
C46042A C46043A
C46051C> <C46052Aa
C47002D C47003A
C47008A C47009B
C48004F C48005A
C48007B C48007C
C48009B (C48009C
C480091 C480093
€49022A C49022B
<C4A005A C4A005B
C4a011a C4Aa012A
C51004a C52001Aa
C52005D C52005E
CS2009B C52010A
<C52103B (¢52103C
<C52103M (€52103p
C52104B (€52104C
C52104M C52104p
C53005A C53005B
C54A04A C54A06a
<C54A13D C54a22a
C54a41a CS4A42A
C54A42G C55B03A
<C55B08A C55B09A
€55C01A €55C02A
C57002a €57003A
C58004B C58004C
C58005H (C58006A
<C61008A €61009A
C62006A C62009A

IMPLEMENTATION DEPENDENCIES

C63004A C64002B> <C64004G C64005A C64005B C64005C C64103A
C64103B C64103C C64103D C64103E C64103F> <C64104A C64104B
C64104C C64104D C64104E C64104F C64104G C64104H 641041
C64104J C64104K C64104L C64104M C64104N C641040 C64105A
C64105B C64105C C64105D C64105E C64105F> <C64106A C64106B
C64106C C64106D C64107A C64108A C64109A C64109B C64109C
C64109D C64109E> <C64109F C64109G C64109H C641091 C64109J
C64109K C64109L> <C64201B C64201C C64202n C65003A> <C65003B
C65004A C66002A C66002C C66002D C66002E C66002F C66002G
C67002A C67002B C67002C C67002D C67002E> <C67003A C67003B
C67003C C67003D C67003E C67005A C67COSB C67005C C67005D>
<C72001B C72002A C73002A C73007A C74004A C74203A C74206A
C74207B C74208A C74208B C74209A C74210A C74211A C74211B
C74302A C74302B C74305A (C74305B C74306A C74307A> <C74401D
C74401E (C74401K C74401Q C74402A C74402B C74406A C74407B
C74409B> <C83007A C83012D C83022A C83023A C83024A (C83025A>
<C83027A CB3027C C83028A C83029A CB3030A> <C83031A (C83031C
C83031E (83032A (83033A C83051A C83B02A CB3B02B C83E02A
C83E02B C83E03A C83E04A C83FOIA CB3F03A CB84002A C84005A
C84008A (C84009A C85004B C85005A CB85005B CB5005C C85005D>
<C85005E CBSO00S5F €B85005G CB5006A> <C85006F C85006G> <CBTAQSA
C87a05B C87BC2A CB7BO2B CB7BO3A C87B04A C87B04B C87BO4C
C87B05A C87BO06A C87BO7A C87B07B> <C87BO07C C87B07D CB7BOTJE
C87B08A C87BOSA C87B09B C87B0OSC C87B10A C87B11A CB7Bl1lB
C87B13A C87B14A C87B14B (C87B14C C87B14D> <C87B15A C87B16A
C87B17A C87B1BA C87B18B C87B19A CB7B23A C87B24A> <C87B33A
C87B34A C87B34B C87B34C C87B35A C87B35B (C87B35C C87B37A
C87B37B C87B37C C87B37D CB87B37E CB7B37F C87B38A CB87B39A>
<C87B40A C87B41A C87B42A C87B43A CB7B44A C87B45A CB7B4SC
C87B47A C87B48A C87B48B C87B50A C87B54A C8TBSTA CB87B62A
C87B62B> <CB100lA CB1002A CB1003A CB1004A CB100SA CB1010A
CB1010B CB1010C CB1010D> <CB2004A CB2005A CB2006A CB2007A
CB3003A CB3003B> <CB3004A CB4001A CB4002A CB4003A CB4004A
CB4005A CB4006A CB4007A CB4008A CB4009A CB4013A CBS002A
CB7003A CB7005A> <CC1004A CC1005C CCl010A> <CC1010B CCl1018A
CC1104C CCl107B CCl111A CC1204A CC12078 CC1220A (CCl221A
CCl221B CCl221C CCl1221D> <CCl222A CCl224A CC1225A> <CC1304Aa
CCl304B CC1305B CC1307A CC1307B CC1308A CC1310A> <CC1311A
CC1311B CC2002A CC3004A CC3007A CC3011A CC3011D CC3012a
CC3015A CC3106B> <CC3120A CC3120B CC3121A CC3123A CC3123B
CC3125A CC3125B CC3125C CC3125D> <CC3126A CC3127A CC3128A
CC3203A CC3207B CC3208A CC3208B> <CC3208C CC3220A CC3221A
CC3222A CC3223A CC3224A- (CC3225A> <CC3230A CC3231A CC3232A
CC3233A CC3234A CC3235A CC3236A CC3240A CC3305A CC3305B
CC3305C CC3305D CC3406A CC3406B CC3406C CC3406D CC3407A
CC3407B CC3407C CC3407D CC3407E CC3407F> <CC3408A CC3408B
CC3408C CC3408D CC3504A CC3504B CC3504C CC3504D CC3504E
CC3504F> <CC3504G CC3504H CC3504I CC3504J CC3504K> <CC3601A
CC3601C> <CC3603A CC3606A CC3606B CC3607B>

* This test listed in two explanations

2-9

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.
For technical and sales information about this Ada implementation, contact:

Terry L. Dunbar
TLD Systems, Ltd.
3625 Del Amo Blvd.
Suite 100
Torrance, CA 90503

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The 1list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported {(item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below). '

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3459
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 67
d) Non-Processed I/0 Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of Inapplicable Tests 616 (c+d+e)

g} Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The tests were
grouped in bundles for more efficient processing. The contents of the
magnetic tape were initially loaded on the Sun-4, and moved to the IBM RISC
System 6000/530 using Ethernet.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results
were captured on the host computer system.

Testing was performed wusing command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Options | Switch Effect
No_Phase Suppress displaying of phase times during
compilation

All tests were executed with the Code Straightening, Global
Optimizations, and automatic Inlining options enabled. where
optimizations are deteeted by the optimizer that represent
deletion of test code resulting from unreachable paths,
deleteable assignments, or relational tautologies or
contradictions, such optmizations are reflected by informational
or warning diagnostics in the compilation listings.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UGB9]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for S$MAX IN LEN——also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
$MAX IN LEN 120 — vVvalue of V
$BIG ID1 (1..v-1 => "A", V=> r1’)
$BIG_ID2 (1..v=1 => 'A", V => '27)
$BIG_ID3 (1..v/2 => 'A’) & '3' &
(1..V-1-v/2 => 'A’)
$BIG ID4 {1..v/2 => 'A’') & '4; &
(1..v=-1-v/2 => 'A’)
$BIG_INT LIT (1..v-3 => '0’) & "298"
$BIG_REAL LIT (1..v-5 => '0') & "690.0"
$BIG_STRINGI PMrog (1..V/2 => 'A’) & '
$BIG_STRING2 thros (1..V=1-v/2 => 'A") & "1 & '
$BLANKS (1..v-20 => * ’)

$MAX LEN INT BASED LITERAL
"2:" & (1..v-5 => '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7 => ’0’) & "F.E:"

A-1

MACRO PARAMETERS

$MAX STRING LITERAL

The following table 1lists all
respective values.

Macro Parameter

g (1..V-2 => 'AT) & '

of the other macro parameters and their

Macro Value

SACC SIZE
$SALIGNMENT
$COUNT_LAST
SDEFAULT MEM SIZE
$DEFAULT STOR UNIT
$DEFAULT SYS NAME
$DELTA DOC
$ENTRY_ ADDRESS
$ENTRY_ADDRESS1
SENTRY ADDRESS2
$FIELD LAST

$FILE _TERMINATOR
$FIXED NAME
SFLOAT NAME
$FORM_STRING

$FORM_STRING2

16

511

65536

16

AF1750

2.0%*(-31)

15

17

19

127

ASCII.FS

NO_SUCH FIXED TYPE
NO_SUCH_FLOAT TYPE

"n

"CANNOT RESTRICT FILE CAPACITY"

$GREATER Ti.AN DURATION

90000.0

$GREATER THAN DURATION BASE LAST

131073.0

$GREATER THAN FLOAT BASE LAST

1.71000E+38

$GREATER THAN FLOAT SAFE LARGE

2.73000E+37

A-2

MACRO PARAMETERS
$GREATER THAN SHORT FLQAT SAFE LARGE
NO_SUCH _SHORT FLOAT TYPE
$HIGH PRIORITY 64

$ILLEGAL EXTERNAL FILE NAMEl
BADCHARE. !

$ILLEGAL EXTERNAL FILE NAME2
THISFILENAMEWOULDBEPERFECTLYLEGALIFITWERENOTSOLONG . SOTHERE

$INAPPROPRIATE LINE LENGTH

~1
$INAPPROPRIATE_?AGE“LENgTH
$INCLUDE_PRAGMAL PRAGMA INCLUDE ("A28006D1.TST")
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")
$INTEGER FIRST -32768
$INTEGER LAST 32767

$INTEGER LAST PLUS 1 32768
$INTERFACE LANGUAGE ASSEMBLY
$LESS_THAN DURATION -90000.0

$LESS_THAN DURATION BASE FIRST
-131073.0

$LINE TERMINATOR ASCII.CR
$LOW_PRIORITY 1

$MACHIN% CODE STATEMENT
R_FMT’ (OPCODE=>LR,RA=>R0,RX=>R2);

$MACHINE CODE TYPE ACCUMULATOR

-

$MANTISSA DOC 31

$MAX DIGITS 9

$MAX INT 2147483647

$MAX INT PLUS 1 2147483648

$MIN_INT -2147483648

$NAME NO_SUCH INTEGER TYPE
A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

TLD ADA COMPILER 1750A—§DA-;

CompiLER UsAGE

Example: With the logical name definiction

$ DEFINE ADA DEFAULTS "/LIST/MAC/NOCHECKS"
the Ada compiler invocation command

$ ADATLD/DEBUG TEST
is expanded to

$ ADATLD/LIST/MAC/NOCHECKS/DEBUG TEST

by the compiler.

3.4 CoMPILER OPTION SWITCHES

Compiler option switches provide control over various processing and
output features of the compiler. These features include several
varieties of 1listing output, the level and kinds of optimizations
desired, the choice of target computer, and the operation of the
compiler in a syntax checking mode only.

Keywords are used for selecting various compiler options. The
complement keyword, if it exists, is used to disable a compiler option
and is formed by prefixing the switch keyword with "NO".

Switches may be abbreviated to the number of characters required to
uniquely identify the switeh. For example, the switch "CROSSREF"
(explained in the 1list below) may be wuniquely identified by the
abbreviation "CR" or any longer abbreviation. 1In the list of switches,
on the following pages the abbreviations are in bold, the optional
extra characters are not bolded.

If an option is not specified by the user, a default setting is
assumed. All specified compiler options apply to a single invocation
of the compiler.

The default setting of a switch and its meaning are defined in the
table below. The meaning of the complement form of a switch is
normally the negation of the switch. For some switches, the complement
meaning is mnot obvious; these complement switch keywords are listed

separately.

In the description of the switches, the target dependent name targer is
used, The wvalue of this symbol is determined by the value of the

TARGET switch.

ﬂ TLD SYSTEMS LTD

TLD ADA COMPILER 1750A-§\DA-§

CoMpILER UsAGE

Compiler generated file specifications generally conform to host
conventions. Thus, any generated filename is the source filename
appended with the default file ctype. The output file name can be
completely or partially specified.

ﬁ SYSTEMS (TD

TLD ADA COMPILER 1750A-§DA-§

CoMPILER USAGE

SWITCH NAME MEANING

16BADDR
32BADDR -- default

The 32BADDR option causes address computations to be performed
using 1750A double precision fixed point data words. If 16BADDR is
selected, address computations will be performed using single
precision fixed point data words ignoring the possibility of a
1750A Fixed Point Overflow Interrupt due to computation of an
address greater than 7FFF hex. Applicable to 1750A target only.

AsyM {~emulation-file-spec)
NOAsM -- default

The ASM switch selects an assembler output £ile which contains VaX
macro references for assembling and emulation ~“ ~he target on the
VAX (1750A target only).

If no emulation-file-spec is specified, the file name is formed
from the file name of the input-file-spec with the file type
".MAR". If only the emulation-file ..eme is smecified, a file type
of ".MAR" is added to form the full file name. If onlv the file
type 1s specified, the file name of the input-file-spec is used
with the specified file type to form the £full file name.

The ASM switch overrides an earlier ASSEMBLY or MACRQO switch.

CALL TREE
NOCALL_TREE -- default

This switch is used in conjunction with /ELABORATE and /LIST to
cause all .CTI files (corresponding to the complete set of object
files being linked for this program) to be read in and a closure of
all calls in the program to be computed. The results of this
analysis is formatted into a subprogram call tree report.

Note: The call tree wWill be incomplete if any required compilation
unit’'s .CTI files are missing.

#‘ TLD SYSTEMS (TD

TLD ADA COMPILER 1750A--§\DA?l g

CoMPILER UsaGE

CHECKs -- default
CHECKS (=(check_identifier{,...)))
NOCHECKS {=(check_identifier(,...}))

When the CHECKS switch is used, one or more check_identifiers are
specified and the specified run time checks are enabled. The
status of 7run time checks associated with unmentioned
check_identifiers is unchanged.

Without any check_identifiers, the NOCHECKS switch omits all run
time checks. 1If one or more check_fdentifiers are specified, the
specified run time checks are omitted. The status of run time
checks associated with unmentioned check_identifiers is unchanged.

Checks can be eliminated selectively or completely by source
statement pragma Suppress. Pragma Suppress overrides the checks
switch.

Check_identifiers are listed below and are described in the LRNM,
Section 11.7.

ACCESS_CHECK DISCRIMINANT CHECK DIVISION_CHECK
ELABORATION_CHECK INDEX CHECK LENGTH_CHECK
OVERFLOW_CHECK RANGE_CHECK STORAGE_CHECK
COXFIG=value
NOCONFIG=value

The CONFIG switch provides a conditional compilation
(configuration) capability by determining whether or mnot source
text, introduced or bracketed by special comment constructs, is
compiled. For a single line:

--/value source-text
where source-text is compiled only 1if <config = value is
specified.

For multiple lines: .

--/value line-1
--/value line-2
--/value line-n

.'%a S9YSTEMS LTD

TLD ADA COMPILER 1750A-9DA1§

ComPILER USAGE

wvhere the construct

--/value line-1
line-2
--/value line-n

is equivalent.

NOTE: The braces ({ and)) must ap, ear in the source c¢ode; in
this instance, they are not meta-characters. All of the text
between -- / (value and --- /) value is compiled or skipped,
depending upon whether or not the config=value is present.

CRossreF
NOCROSSREF -- default

This switch generates a cross reference listing that contains names
referenced in the source code. The cross reference listing is
included in the listing file; therefore, the LIST switch must be
selected or CROSSREF has no effect.

CSEG -- default
NOCSEc

This switch indicates that constants are to be allocated in a
control section of their own (1750A target only).

CT1 (=~CTI-file-spec)
NOCT1 -- default

This switch generates a CASE tools interface file. The default
filename is derived from the object filename, with a .CTI1
extension. This swigeh is required to support the Stack Analysis
and/or Call Tree switches.

TLOD SYSTEMS LTD

TLD ADA COMPILER 1750A-§DA1§

CoMPILER USAGE

DEBuG -- default
NODEsuc

This switch selects the production of symbolic debug tables in the
relocatable object file.

Alternate abbreviation: DBG, NODBG

DELASSIGN -- default
NODELAssIGN

This switch optimizes code by deleting redundant assignments.

NOTE: Use of this switech can cause erroneous source programs to
execute with unexpected results if references to access objects
are made without regard to the interference semantics of Ada.

DIAcNOSTICS -- default
NODIacNOSTICS

The DIAGNOSTICS switch produces a file compatible with Digital's
Language Sensitive Editor and the XinoTech Composer. See Digital’'s
documentation for the Language Sensitive Editor for a detailed
explanation of this switch.

ELABORATOR

This switch selects generation of a setup program that elaborates
all compilation units on which the named subprogram depends and
then calls the named program. This program will be the main
program at link time.

EXCEPTION_INFO
NOEXCEPTION_INFO -- default

This switch generates a string in the relocatable object code that
is the full pathname of the file being compiled, It generates
extra instructions to identify the location at which an unhandled
exception occurred. The NOEXCEPTION_INFO switch suppresses the
generation of the strirg and extra instructions. The source
statement pragma Suppress (ALL_CHECKS) or pragma Suppress
fEXCEPTION_INFORMATION) suppresses only the extra instructicns.

ha N BN IR)

%ﬂ SYSTEMS L.TD

TLD ADA COMPILER 1750A-§DA-2

CoMPILER USAGE 13

FULL CAIL_TREE -- default

When the FULL_CALL TREE switch is wused, the compiler liscting
includes representations of every call.

INDENT=n
INDENT-3 -- default

This switch produces a formatted (indented) source listing. This
switch assigns a value to the number of columns wused in
indentation; the value n can range from 0 to 15.

INDIRrECT
NOINDIRECT -- default

If this switeh is used, all subprograms declared in the compilation
are called with indirect calls. This switch only applies to the
17504 target.

INFo -- gefault
NOINFo

This switch produces all diagnostic messages. 1% suppresses the
production of information-level diagnostic messages.

INLINE -- default
NOINL1INE

This default switech automatically inlines any procedure that is
called only once. It may be disabled by adding the noinline option
to the command line. Inlining is only implemented for calls that
are made within the same compilation wunit as the body of the
procedure to be expanded.

INTsL
NOINTSL -- default

This switch intersperses 1lines of source code with the assembly
code generated in the-macro listing. This switch is valid only if
the LIST, SOURCE, and MACRO switches are selected. and one of the
MACRO, ASM, or ASSSEMBLY switches is selected. The MACRO switch
overrides an earlier ASSEMBLY or ASM switch.

LIBRARY=Ada-program-library-file-spec
LIBRARY~zargec.LIB -- default

This switch 4identifies the file to be wused for Ada Program
Library. The default value of rarget in the Ada Program Library
file spec is derived from the TARGET switch.

ha BN JIEN T L IS §

N) N3) A)

!11EE§9=ﬂﬂETENMiUTD

TLD ADA COMPILER 1750A-§DA1 g

CoMPILER USAGE

LIST(~listing-file-spec}
NOLIST -- default in interactive mode
LIST -- default for background processes

The LIST switch generates a listing file. The default file type is
.L1S. The listing-file-spec can be optionally specified.

LOc
NOLOG -- default

This switch requests the compiler to write a compiler log,
including command line options and the file spec of the Ada source
file being compiled, to SYS$OUTPUT.

MACro
NOMACRO -- default

The MACRO switch produces an assembly like object code listing
appended to the source listing file. The LIST switch wmust be
enabled or this switch has no effect.

MAIN ELAB
NOMAIN_ELAB -- default

The MAIN ELAB switch iIs used to iInform the compiler that the
compilation unit being compiled is to be treated as a user-defined
elaboration, or setup, program.

Note: The XTRA switch is required when MAIN_ELAB is to be used.

MAKELIB(=parent-APL-spec)
NOMAKELIR -- default

Tha MAKELIB switch creates a new Ada Program Library (APL) file.
MAKELIB should be used with caution because it creates a new APL
file in the default directory even if another APL file of the same
name existed.

The new APL file is created in the default directory with the name
target.LIB unless the LIBRARY switch is used.

If MAKELIB is used without a parent, a new library i{s created with
the default RTS specification. This specification is derived from
the name TLD LIB_target. See the target dependent compiler
sections for further explanations of this name.

“‘ TLD BYSTEMS LTD

TLD ADA COMPILER 1750A-§\DA1§

CompiLER USAGE

MAXERRORS=n
MAXERRORS=500 -- default

This switch assigns a value limit to the number of errors forcing
job termination. Once this value is exceeded, the compilation is
terminated. Information-level diagnostic messages are not included
in the count of errors forcing termination. The specified value’s
range is from 0 to 500.

MODEL~zodel -- 1750A target
MODEL~STANDARD -- default
MODEL~vAMP
MOpEL-1BM_GVSC -- IBM_GVSC target
MODEL-HWELL_GVsc -- Honeywell GVSC target
MODELFHWELL_GVSC_FPP -- Honeywell GVSC target (with
floating point processor)
MODEL~-RWELL_EcCa -- Rockwell Embedded Compiler architecture
=RI1750AB -- Rockwell International 1750A/B architecture
MOpEL~MA31750 -+ Marconi 31750 architecture
MODEL~PACE_1750AE -- PACE 1750AE architecture
MODEL~MS_1750B_I1 -- MIL-STD-17508, Type 1II
=MS_1750B_111 -- MIL-STD-1750B, Type III
MOpEL~MDC281 -- Marconi MDC281

By default, the compiler produces code for the generic or standard
target. The model switch allows the user to specify a mnonstandard

model for the target.

For the 1750A target, MDC281 switch selects the MDC281 (MAS 281)
implementation of MIL-STD-1750A.

OBJECT(=object-file-spec)
OBJECT -- default
NOOBJECT

The OBJECT switeh produces a relocatable object file. The default
file type is ".0OBJ".

OPT .- default -
NOOPT

The OPT switch enables global optimization of the compiled code.

%&.D BSYSTEMS LTD

TLD ADA COMPILER

ComPILER USAGE

PAGE=n
PAGE=60 -- default

1750A-ADA-2
3-16

The PAGE switch assigns a value to the number of lines per page for
listing. The value can range from 10 to 99.

PARM
NOPARM -- default

The PARM switch causes all option switches governing the
compilation, including the defaulted option switches, to be
included in the listing file. The LI

selected or PARM will have no effect.

User

ST option must also be
specified switches are

preceded in the listing file by a leading asterisk (*).

PHASE -- default
NOPHasE

The NO_PHASE switch suppresses the display of phase names during

compilation.

REF_ID_casg=option

The Ref_Id_Case switch 1is wused to determine how variable names
appear in the compiler listing. The options for this switch are:

All Lower -~ All variable
All_Underlined -- All variable
All_Upper -~ All variable
As_Is -~ All variable
Initial_Caps -~ All variable

Insert_Underscore -- All variable
REF_KEY_cCaSE-option

The Ref_Key_ Case switch is used
appear in the compiler listing. The

All_Lower -~ All Ada key
All_Underlined -+ All Ada key
All_Upper -~ All Ada key
As_1s -~ All Ada key
Inicial_Caps -~ All Ada key
Insert_Underscore -- All Ada key

names
names
names
names
names
names

to det

are in lower case.
are underlined.
are in upper case.
appear as is.

have initial caps.

have underscores Inserted.

ermine how Ada key words

options for this switch are:

words
words
words
words
words
words

are in lower case.

are underlined.

are in upper case.

appear as is.

have initial caps.

have underscores inserted.

.11;E§frssurnz~usnrn

TLD ADA COMPILER 17501’«-5\DA-1 ;

CoMpILER USAGE

REFORMAT (=reformat-file-spec)
NOREFORMAT -- default

This switch causes TLDada to reformat the source listing in the
listing file and, if a reformat-file-spec is present, to generate a
reformatted source file. The default type of the new source f£ile
is " _.RFM".

SOURCE -- default
NOSOurce

This switch causes the input source program to be included in the
listing file. Unless they are suppressed, diagnostic messages are
alvays included in the listing file.

STACK_ANALYSIS
NOSTACK_ANALYSIS -- default

This switch is used with the ELABORATOR switch to cause &ll CTI
files (corresponding to the complete set of object files being
linked for this program) to be read in. The subprogram call tree
is analyzed to compute stack requirements for the main program and
each dependent task.

NOTE: The tree will be incomplete if any required compilation
unit’s CTI files are missing.

SYNTAX_ONLY
NOSYNTAX_ONLY -- default

This switch performs syntax and semantic checking on the source
program. No object file is produced and the MACRO switch is
ignored. The Ada Program Library is not updated.

TARGET=1750A -- default
TARGET=VAX -- default

This switch selects -the target computer for which code is to be
generated for this compilation. "1750A" selects the MIL-STD-1750A
Instruction Set Architecture, Notice A. "VAX" selects the VAX
architecture operation under VMS.

ﬂ TLO SYSTEMS LTD

TLD ADA COMPILER 1750A-§DA-£ g

CompILER USAGE

WARNINGS -- default
NOWARNINGS

The WARNINGS switch outputs warning and higher-level diagnostic
messages.

The NOWARNINGS switch suppresses the output of both warning-level
and information-level diagnostic messages.

WIDTH=-n
WIDTH=110 -- default

This switch sets the number of characters per line (80 to 132) in
the listing file.

WRITE ElAB
NOWRITE_ELAR -- default

The WRITE_ELAB switch is used to obtain an Ada source file which
represents the main elaboration *setup" program created by the
compiler. The MAIN_ELAB switch may not be used at the same time as
the ELAB switch.

XTRA
NOXTRA -- default

This switch is used to access features under development. See the
description of this switch in Section 3.9.

.11;E§f:saarrs~usuru

TLD EXTENDED MEMORY LINKER 1750A—L§K-3§

DIRECTIVE LANGUAGE

4. DIRECTIVE LANGUAGE

TLDInk is called by a command which may specify options in a form which
is host dependent. See Chapter 5 for a description of the command line
on a specific host computer. On each host, one of the options is to
specify a linker directive file which is hest independent. This
section describes the directives which may appear in a linker directive
file to control a link peration.

4.1 DirecTIVvE FILE

Each 1line of the u-.ective File contains up to 132 characters. Tabs
are treated as bl .~ -. Blanks are necessary to separate words when nmo
other punctuatiun would otherwise separate them, but the number of
blanks used is insignificant. Any characters after two successive
minuses (--) are ignored. A directive ordinarily consists of one line
of input. but an opening parenthesis, "(" or "<", which is unmatched on
one lin: causes all following lines to be included in the same
directive wuntil the closing parenthesis, ")" or ">", 1is found,
permitting long parenthesized lists. Words may not be divided between
lines. Only one directive is allowed per input line. Either upper or
lower case may be used; upper and lower case are equivalent. 1In the
following 1list of directives and components (e.g., directive
attributes), the acceptable abbreviaction for a directive is in bold and
may be wused instead of the entire directive or component name. For
example, the CSECT directive attribute WRITEPROTECT may be entered as
"U.'

4.2 DIRECTIVES

TLDlnk directives are individually described in this section and appear
in alphabetical order. For discussions of related directives, refer to
Sections 3.2 -3.8, in Chapter 3. '

In the following descriptions, upper case Roman font is used for
keywords and lower case italics indicates information provided by the
user, e.g., ADDRESS STATES decimal.

Characters inside curley {)} braces are optional, the user may enter or
omit them. Rectangular braces with a vertical bar inside represent a
choice; [X]Y] indicates that the user may enter X or Y, but not both.

.71§EEF:ssurnE~uscn1:
- e s e

TLD EXTENDED MEMORY LINKER 1750A-L§K-3é\

DirecTIVvE LANGUAGE

The ~ symbol is used for a convenient line break. It is not part of
the syntax.

In these descriptions, directive switches are shown with "*" as the
lead-in character. For VAX or MV hosted systems, the user should
replace "*" with "/". For UNIX hosted systems, "** should be replaced
with "-". For example, the "*TRANSIT" switch (in the NODE description)
is entered as "/TRANSIT" for VAX systems, or "-TRANSIT" for UNIX
systems.

The following words, in lower case italics, are used in the
descriptions:

file

This is a host file specification. A file specification must be
completely contained on a line.

node
This is the name of a node in the program being linked.

module
This is the name of a module in the program being linked.

symbol
This is the name of an external symbol in the program being
linked.

laddress
This is a logical address, in the form (a.)n{I{0]. 1In the
address, & is a hexadecimal digit giving the address state
(default 0), n is a hexadecimal number from 0 to FFFF giving the
address within the address state, and I or O (upper or lower
case) specifies instruction or operand.

paddress .
This 1is a physical address in the form of a hexadecimal number
from O to FFFFF.

address

This is a logical or physical address.

— — . a7 o Smrt

#‘ TLD SYWSTEMS LTD

TLD EXTENDED MEMORY LINKER 1750A-L‘I;IK-3§

DIRECTIVE LANGUAGE

lpage

This is a 1logical page number in the form (a.ln{I|{0). 1In the
address, & is the address state (default 0), n is a hexadecimal
number from O to F giving the page number within the address
state, and I or O indicates instruction or operand.

ppage

This is a physical page number in the form of a hexadecimal
number from 0 to FF.

decimal
This is a decimal number.

Each TLDlnk directive is described below.

ADDRESS STATES decimal

This directive declares the number of page registers which
the program being linked is expected to use. If the number
is 0, TLDlnk assumes that there are no page registers, and
memoTy mapping is not supported.

If this directive is absent, TLDlnk assumes that the program
being linked uses 16 Address States.

ASSIGN lpage,pragel,number-pages)

The ASSICN directive causes TLDInk to assign the specified
logical page(s) to cthe specified physical page(s). The
assignment begins at lpage and ppage and continues with
consecutive logical and physical pages until number-pages
have been assigned. If number-pages is omitted, the default
is 1 page. The ASSIGN directive is required for all physical
pages specified in ROM directives if ADDRESS STATES {is
greater than zero.

CINCLUDE file((module((csect,...)}{-symbol,...},...)} -symbol, ...}

CINCLUDE, the conditional INCLUDE directive, is no longer
supported. Use the INCLUDE directive instead.

#‘ TLD SYSTEMS LTD

TLD EXTENDED MEMORY LINKER 1750A-L§K-3§

DIRECTIVE LANGUAGE

COLLECT NODE = node_name {,[ATTR~attribuce|NAME~=csect_name])

The COLLECT NODE directive collects control sections by
attribute or name and moves them to the splecified node. The
control sections collected are those between the last NODE
directive and the COLLECT directive which have the specified
attribute or control section name.

COMMENT ="Text ro be put in Load Module”

The COMMENT directive contains text which TLDlnk puts in the
load module. TLDInk precedes the text within quotes by "*/;;”
to distinguish user inserted comments from those {nserted by
TLDlnk (which begin with "/;"). All comments specified by
COMMENT directives are inserted in the load module
immediately following the initial comment which is created by
TLD1nk.

CONTINUATION

The CONTINUATION directive indicates that the character
following the directive is a continuation line mark for the
current directive file and all nested directive files. A
continuation line mark is used when more information |is
needed to couwplete the current line.

The default continuation marks are operating system-specific:
the continuation 1line mark for computer systems running on
UNIX is ™\", for VAX/WMS it is "-", and the mark for AQS/VS
systems 1is "&." Continuation line mark characters are set
for a directive file when the CONTINUATION directive 1is
followed by the appropriate continuation character.

A continuation line mark must be preceded by a space. The
mark cannot cross file boundaries. Continuation 1line marks
only affect lines within the same directive file.
For example, a continuation line in UNIX might look like:
store 888 - 1,2,3,4,5,6,7,8,9,10,11,12,13,14, \
15,16,17

and is equivalent to:

store 888 ~ 1,2,3,4,5,6,7,8,9,10,11,12,13,14
store 896 = 15,16,17

A continuation line mark may also be used to place a comment,
for example:

.1r1gEE;?:sau571mvnsLﬂ1:

TLD EXTENDED MEMORY LINKER 1750A-L§K-315\

DirecTIVE LANGUAGE

store 888 « 1,2,3,4,5,6,7,8,9,10,\-- comment here

11,12,13
NOTE: If the continuation character "-" is to be used in
other contexts (e.g., using it on the VAX to exclude

symbols on an INCLUDE directive), then the CONTINUATION
directive must be used to change the default continuation

character.
CSECT module,csect!,{address|ALIGN=n]} {ATITR=acrribure-1list)

The CSECT directive specifies the address or alignment and/or
the attributes of a control section. The module and csect
name are required to identify the control section uniquely.
Either address or alignment, but not both, may be specified.
If address is specified, it is given as a single hexadecimal
number. TILDlnk interprects the address as physical if ADDRESS
STATES 1is O; otherwise, TlDlnk interprets the address as an
instruction address or operand address according to the

control section attribute. The attributes are identified
below. In this list, the characters in bold must be entered,
the remaining plain text characters are optional. Italics

indicates information provided by the user.

WRITEPROTECT Allocate this control section to a page
covered by a page register with the
write protect bit on.

NOTWRITEPROTECT Allocate this control section to & page
covered by & page register with the
write protect bit off.

BLOCKPROTECT Allocate this control section to a
1024-woxrd block protected from
processor access by a bit in
memory-protect RAM.

NOTBLOCKPROTECT Allocate this control section to a
- 1024 -word block with processor access
allowed by a bit in memory-protect

RaM.

DMAPROTECT Allocate this control section to a
1024-word block protected from DMA
access by a bit in memory-protect RAM.

TLD SYSTEMS LTD

TLD EXTENDED MEMORY LINKER 1750A-L§K-316&

DIRECTIVE LANGUAGE

NOTDMAPROTECT Allocate this control section to a
1024-word block with DMA access
allowed by a bit in memory-protect
RAM.

STARTROM Allocate this control section to a page
designated as startup ROM by & ROM
linker directive.

RAM_OR_rom Allocate this control section to a page
designated as RAM OR_ROM by a ROM
linker directive, or if there is no
such linker directive or not enough
room in the ROM, allocate this control
section to RAM.

ROM_ONLY Allocate this control section to a page
designated as ROM_ONLY by a ROM linker

directive.

RAM_ONLY Allocate this control section to a page
not designated as ROM by a linker
directive.

DEBUG

DEEUG causes the linker to create a file containing symbols
and their values for use by the symbolic debugger. The
liuker puts all externmal symbols in the symbol file and any
local symbols which were included in the Relocatable Object
File by the compiler or assembler. If no file-spec is
specified, the name of the symbol file is derived as
described in the MAP switch. If DEBUG is not specified, the
linker does not produce the symbol file.

DEBUG causes a TLD Symbol File (.sym) to be generated when
LDMTYPE = LDM or LIM is specified. DEBUG causes the HP
Linker Symbol Files (.L) and an Assembler Symbol File (.A) to
be generated whenever LDMIYPE=HP is specified.

END

This directive is always required. In a file specified in a
USE directive it terminates directive input from that file.
In the primary directive file, it terminates directive input
to TLDlnk, so that any subsequent input is ignored. After
this directive is read, TLDink allocates memory and reads the
object files to produce the load module.

ﬁ’ SYSTEMS LTD

TLD EXTENDED MEMORY LINKER 1750A—L§K-3)7\

DIRECTIVE LANGUAGE

ENTRY MODULE {-}symbol,...

The option to have TLDlnk produce an entry module file is
specified in the command line. See Chapter 5 for a
description of the command line options.

If the option to produce an entry module file is specified in
the command line, then an ENTRY MODULE directive may be used
in the directive file to restrict the entry points which are
defined in the entry module file. If the ENTRY MODULE
directive does not appear, all external symbols defined in
the link are defined in the entry module file. 1If the ENIRY
MODULE directive is used, it must precede any NODE
directive.

The symbols listed inside angle brackets in this directive
are all preceded by & minus sign, or are all not preceded by
a minus sign. If cthe symbols are not preceded by & minus
sign, then only the symbols given are defined in the object
module. 1f the: symbols are preceded by a minus sign, then
all the entry points in the node except the symbols given are
defined in the object module.

EXCLUDE file ((module,...))

EXCLUDE, a directive which includes a file while excluding
selected modules, is no longer supported. Use the INCLUDE
directive instead.

.71;E§ftssus1tyvusnvz:

TLD EXTENDED MEMORY LINKER 1750A-L§K-318\

DIRECTIVE LANGUAGE

INCLUDE({*COND) [file{(module_symbol list)) | file((module_list)}-
{<symbol_list>}]

module_symbol_list ::=

module ((csect_list)){<symbol_list>}|,module{(csect_list))~
{<symbol list>})

module_list ::=

module [{(csect_list)}{,module{(csect_lisc)}}... ~
| modulel{,-module))

csect_list ::= csecr{,csect...) | -csect(,-csect...}

symbol_list ::= symbol{,symbol...) | -symbol{,-symbol...)

BNF notation is used above to express the complicated syntax
of the INCLUDE directive.

This directive causes the specified file to be included in
the load module. If any module names are listed in
parentheses, all the names must be prefixed with minus signs
or none of them may have minus signs. If the module names
are preceded by a minus sign, then those object modules are
excluded from the load module. If the module names are not
preceded by & minus sign, then only the named modules are
included in the load module. In either case, the order of
the module names is not significant. If no modules are
listed in parentheses, then the entire file is included.

If module names are listed without minus signs, each module
name may be followed by individual control section names 1in
parentheses following the module name, If any control
sections are listed, all the control sections must be
prefixed by minus signs or none of them may have minus
signs. 1f control section names are preceded by minus signs,

those control sections are excluded from the 1link. If
control section names are not preceded by minus signs, only
the named control sections are included in the link. If no

list of control section names fo.iows a module name, the
entire module is included in the link.

If module names are not listed, or if module names are listed
without minus signs, individual external symbol definitions
may be included or excluded from individual modules or from
the entire file by 1listing the symbol names, optionally
prefixed with minus signs, and enclosed in angle brackets (<
>). If a symbol list follows a module name (and its optional
list of control section names), the specified symbols are

TLEO SYSTEMS LTD

TLD EXTENDED MEMORY LINKER 1750A-L£{K-3§

DIRECTIVE LANGUAGE

included or excluded from the module. If a symbol 1list
follows the file name (and the optional list of module
names), the specified symbols are included or excluded from
the entire file. Symbols may be excluded or included in a
directive line, but nor both. If the *COND qualifier is
used, then the specified modules are included in the load
module only if they have not already been included.

INDIRECT (*ADDRESS = address)(*ROMADDRESS = address)} symbol,...

The INDIRECT directive specifies symbols that are accessed
indirectly, through a branch vector. 1In this vector, symbols
are ordered the same way that they are in the symbol list.
The ADDRESS qualifier provides the starting address of the
transfer vector. This must be a physical address. The
ROMADDRESS qualifier specifies the starting address of a copy
of the transfer vector in ROM.

A symbol may only appear once in an INDIRECT symbol list.
However, multiple definitions of these are permitted in the
object code to permit replacement of procedures. When
multiple definitions are used, the transfer vector contains a
branch to the last procedure encountered, and no diagnestic
is issued.

For more information, see the discussion of "Reprogramming"
in Section 3.2.8 of this manual.

LDMTYPE~format|(,format...)
LOMTYPE=LDM -- default
LDMTYPE=LIM

LDMTYPE=HP

LDMTYPE specifies the format of the load module and symbol
file(s) TLDlnk is to produce. Three formats are currently
available. 1If more than one format is specified, the members
of the 1list are separated by commas. See DEBUG for related

information.

o 1DM (file extension ,LDM), the default, specifies the TLD
Load Module Format.

o LIM (file extension .L1LM) specifies a format that is
similar to the TLD Load Module Format, but with logical
addresses instead of physical addresses. See Section

3.10.

o HP (file extension .X) specifies the Hewletc-Packard
HP64000 Absolute File format.

TLD SYSTEMS LTD

TLD EXTENDED MEMORY LINKER 1750A-L§K-§9

DirecTIVE LANGUAGE

LET (*MEMORY TYPE = "memory type name”) svmbol = value

The 1ET directive causes the linker to set the specified
symbol to the specified value. The effect is as if the
symbol had been defined as an EXPORT in an object module.
Any external reference to the specified symbol from an object
module will be set to the wvalue specified in the LET
directive. Optionally, a symbol type can be declared as a
specific memory type if MEMORY TYPE {s set = ‘“memory ctype
name. "

MAXADR address

This directive gives the maximum physical address the program
is expected to use. If the directive is not used, it is
assumed that all O0..FFFF (hexadecimal) locations are
available, except those reserved by the RESERVE directive.
If the linked program extends beyond the specified address,
it is linked with a warning.

MEMORY BLOCK PROTECT

This directive announces that the block protect RAM is
available on the target processor, permitting hardware memory
protection in increments of 1024 words. If this directive is
present, values for loading in wmemory-protect RAM are
included in the load module. If this directive is absent,
TLDlnk assumes that there is no block protect RAM.

NODE (*(NO)TRANSIT{~Transit_Name) {*STARTROM)
{*ADDRESS=address | *ALIGN=address) node(,node}

The NODE directive declares that all control sections
included up to the next NODE or END directive are contained
in the same node. All control sections in a node are visible
at the same time.

The TRANSIT switch is wused ¢to specify transit routine
options. The default is TRANSIT. If NOTRANSIT is used, tl.e
inserrvion of transit routines 1is suppressed for calls
originating from another node to entry points within this
node. If Transit_Name is used, the named transit routine is
inserted for all calls originating from another node to entry
points within this node.

The STARTROM switch indicates that the contents of this node
are to be placed in startup ROM. This switch inserts a /V
STARTROM record before the contents of this node inm the load
module.

.Tri;EEF:sisusv1avu=L11:

TLD EXTENDED MEMORY LINKER 1750A-L§K-§Il\

DIRECTIVE LANGUAGE

The ADDRESS or ALIGN switch but not both, may be used to
specify the start address or the alignment of the first
module in the node. If ADDRESS STATES is greater than 0,
then the address may be an instruction address, or an operand
address, or both.

The first node name is the name of this node. It ecan
duplicate the name of any symbol, file, or module, or it can
be a new nanme. The second node name is the name of the
parent of this node. When there is no parent (i.e., for =
root node) the second node name i{s omitted. The same name
must not be used as the node name in rtwo NODE directives.
The parent node must precede its descendant nodes. NODE
directives must be ordered such that no node is separated
from its parent node by only its sibling nodes and their
descendant nodes.

NOLOAD address, address

The NOLOAD directive causes code or data within the specified
range to be omitted from the load module. This directive may
occur repeatedly to specify multiple vranges. If ADDRESS
STATES is 0, the addresses must be physical. If ADDRESS
STATES 1is greater than O, the addresses may be logical or
physical.

NOTE: NOLOAD may be used to suppress generation of code or
data that is already in ROM but is referenced by new and or
replacement code.

RESERVE eddress,address

This directive announces that no relocatable control sections
are to be loaded into the specified range of addresses.
Absolute control sections are loaded without regard to
reserved areas. Addresses beyond the MAXADR address are
treated as reserved. This directive may occur repeatedly for
multiple reserved ranges.

If ADDRESS STATES is 0, then the addresses must be physical
addresses. 1f ADDRESS STATES is greater than O, then the
addresses may be logical addresses or physical addresses, but
all RESERVES with physical addresses must precede the first
NODE directive.

TLD SYSTEMS LTD

TLD EXTENDED MEMORY LINKER 1750A-LNK-3A

DIrecTiVE LANGUAGE 4 - 12

ROM(switch_list) paddress,paddress

This directive restricts the given range of physical
addresses to control sections designated as read-only
memory. All other memory is treated as readable and
writeable. This directive may occur repeatedly for separate
ROM ranges. If ADDRESS STATES is greater than O, the ASSIGN
directive must specify the logical pages which are to be
assigned to all ROM physical pages.

The following 1list identifies switches that are used to
specify attributes of control sections which are allocated to
ROM. The attributes of 0/1 and RAM/ROM are checked for all
relocatable control sections. The 0/I attribute can have two
values: Operand or Instruction. The RAM/ROM attribute can
have three values: RAM_ONLY, ROM_ONLY, or RAM_OR_ROM.

*S Restricts this ROM range to control sections with |
attribute STARTROM.

*IR Restricts this ROM range to control sections with |
attributes Instruction and ROM_ONLY. |

*IRR Restricts this ROM range to control sections with]
attributes Instruction and RAM OR_ROM. i

*OR Restricts this ROM range to control sections with |
attributes Operand and ROM_ONLY. |

*0ORR Restricts this ROM range to control sections with |
attributes Operand and RAM_OR_ROM. |

Switches can be combined and the combined attributes will be
selected. In addition, the following are switches that
specify combinations of attributes:

ﬂ TLD SYSTEMS LTD

TLD EXTENDED MEMORY LINKER 1750A-L£IK-3;§

DirecTiveE LANGUAGE

*] Has the same effect as *IR*IRR. Restricts this ROM
range to control sections with attributes Instruction
and ROM_ONLY or RAM_OR_ROM.

*0 Has the same effect as *OR*ORR. Restricts this ROM
range to control sections with attributes Operand and
ROM_ONLY or RAM_OR_ROM.

*R Has the same effect as *IR*OR. Restricts this ROM
range to control sections with attribute ROM_ONLY
regardless of the O/1 attribute value.

*RR Has the same effect as *IRR¥*ORR. Restricts this ROM
range to control sections with attribute RAM_OR_ROM
regardless of the O/I attribute value.

If no switches are specified, contrel sections with
attributes ROM_ONLY or RAM or ROM are allocated to ROM.

SEARCH(*REPEAT) {*NODE=Node_Name} file

This directive causes TLDlnk to search the specified file for
modules which define currently wundefined external
references. Any such modules are included just as if they
had been specified in an INCLUDE directive. Undefined weak
external references do not cause inclusion on a search, but
if an external is both weakly and strongly referenced, its
defining module is loaded by SEARCH. New external references
from modules included from the search file can cause
additional modules to be included from the search file,
regardless of the order of modules in the search file. For
example, 1if the program references only S, and S references
T, and the library contains T followed by S, then both S and
T are included from the library.

The REPEAT switch has two effects. First, it causes TLDlnk
to search the file when the END directive is encountered
instead of when the SEARCH directive is encountered. Second,
the set of files which appear in SEARCH*REPEAT directives is
searched repeatedly to try to define new undefined external
references from any module included from any file in the
set. The REPEAT switch allows the use of multiple 1libraries
which have interlibrary references.

The NODE switch causes TLDlnk to insert any modules included
as a result of the search in the specified node. If the NODE
switch is not used, the modules are inserted in the nede in
which the SEARCH occurs, or if the REPEAT switch is used, in
the last node of the link.

1"EE;DJnﬂETEhﬂFLTD

The

S

TLD EXTENDED MEMORY LINKER 17SOA-L§K-§§

DIRECTIVE LANGUAGE

symbol.

or as
below.

STORE [symbol | address] = [symbol | value | SUM}{,...)]

STORE directive indicates that TlDlnk is to cause one or
more values to be stored in memory when the program being
linked is loaded. The starting location at which values are
to be stored is specified either as an address or an external
If ADDRESS STATES is 0, then the address must be a
physical address. If ADDRESS STATES is greater than 0, then
the address may be a logical address or a physical address.
Each value to be stored is specified as a hexadecimal number,
an external symbol, or as the SUM function described
TLDlnk causes the first value to be stored in the

specified address vwhen the program is loaded into mewory. If

more

than one value is given, the succeeding values are

stored in consecutive addresses following the specified

address.

Without a warning, the values stored in memory by

the STORE directive overwrite any other values stored at the
same locations.

SUM (startadr, endadr, resulr, skipadr)

The purpose
value.

minus

of the SUM function is to return a checksum
The SUM function returns a value equal to resulc
sum of all words from scartadr to endadr with the

exception of the word at skipadr. Any overflows are ignored
in taking the sum. The SUM function is intended to be used
with the STORE directive to compute a value to be stored at

skipadr.

This is computed the following way:

SUM: = resulrt - sum (endadr - startadr) - (skipadr)

If ADDRESS STATES 1is 0, then all the addresses used in the
SUM function must be physical addresses. If ADDRESS STATES
is greater than 0, the addresses may be logical or physical

addresses.

USE file

This

directive causes TLDlnk to read directives from the

specified file umtil it encounters an END directive. Upon

encountering the END directive in the specified file, TLDlnk
returns to the directive following the USE directive.

.,1;E§?uwys1!mnsnn1:

—

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation~dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

oooooooooo

type INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range -1.0%2,0%*127 ,. 0.999999%2.0%*127;
type DURATION is delta 2.0**(-14) range -86400.0 .. 86400.0;
type LONG INTEGER is range -2147483648 .. 2147483647;

type LONG FLOAT is digits 9
range —-1.0%2.0%*127 .. 0.999999999*2.0**127;

end STANDARD; -

APPENDIX F OF THE Ada STANDARD

In the customer’s Appendix F documentation that constitutes this appendix,
some information appears to be inaccurate or incomplete; the AVF offered
the customer an opportunity to redress these points, but the customer
declined to do so.

The customer declined to provide the AVF with an updated list of all
compiler/linker options and the options used specifically for this
validation.

on page T-7, the customer states that the subtype priority is integer
range 1 .. 16#3EFF%#. However the correct range is 1 .. 64.

On page C-8, the customer states that address clauses for task entries
(interrupts) are not supported. However, test B91001H contains such
an address clause, and this test was passed. Also, in a petition
against this test for a Data General implementation, which does not
support such address clauses, the customer asserts that all of the
1750A implementations do support them.

On page C-10, the customer states that the range of priority is 0 to
16366. The correct range is 1 to 64.

On page C-11, the customer states that access objects are implemented
as 16-bit integers. However, for tests CD2A81A et al. (See section
2.3), the AVF was requested to increase by 32 bits the size used for
access objects whose designated objects are strings.

On page C-12, the customer states that the pragma priority is
supported with values of 1 to 16366. The correct range is 1 to 64.

APPENDIX F OF THE Ada STANDARD

The Ada language definition allows for certain machine dependencies 1in a
controlled manner. No machine-dependent syntax of semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementation-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in chapter 13 of the
MIL-STD-1815A; and certain allowed restrictions on representation clauses.

The full definition of the implementation-dependent characteristics of the
TLD IBM RISC6000,MIL-STD-1750A Ada Compiler System is presented in this
Appendix F.

Implementation-Dependentc Pragmas

The TLD ACS supports the following implementation dependent pragmas.

Pragma Collect (type name, attribute);

This pragma tells the compiler to collect all objects of specified
type name and subtypes of type name into unmapped control sections. An
"unmapped control section" is allocated a physical memory location not
covered by a page register. Unmapped control sections are accessed from a
device by DMA or by IBM GVSC extended instructions.

Pragma Control_Section (USECT, UNMAPPED, object name {, object name...});

This pragma specifies data objects that will be put into unmapped control
sections. The first two parameters must be USECT and UNMAPPED and the
remaining parameters are the names of Ada objects. An "unmapped control
section” is allocated a physical memory location not covered by a page
register. Unmapped control sections are accessed from a device by DMA or
by IBM GVSC extended instructions.

Pragma Contiguous (type name);
Pragma Contiguous (object name);

This pragma is used as a query to determine whether the compiler has
allocated the specified type of object in a contiguous block of memory
words. The compiler will generate a warning message if the allocation is
noncontigquous or is undetexrmined. The allocation probably will be
noncontiguous when data structures have dynamically sized components. The
allocation probably will be undetermined when unresolved private types are
forward type declarations. This pragma provides information to the
programmer about the allocation scheme used by the compiler.

APPENDIX F OF THE Ada STANDARD

Pragma Export (Lanquage name, Ada entity name, {String});

This pragma is a complement to Pragma Interface and instr.. 2 tne compiler
to make the entity named available for reference by a foreign language
module. The language name identifies the language in which the foreimm
module 1is coded. The only foreign language presently suppcrted is
Assembly. Ada and JOVIAL are permitted and presently mean the same as
Assembly but the semantics of their use are subject to redefinition by

future releases of the compiler. If the optional third parameter is
present, the string provides the name by which the entity may be referenced
by the foreign module. The contents of this string must conform to the

conventions for the indicated foreign language and the linker being used.
No check is made by the compiler to insure that these conventions are
obeyed.

Only objects having static allocation and subprograms are supported by
pragma Export. If the Ada entity named is a subprogram, this pragma must
be placed within the declarative region of the named subprogram. If the
name 1is that of an object, the pragma must be placed within the same
declarative region and following the object declaration. It 1is the
responsibility of the programmer to insure that the subprogram and object
are elaborated before the reference is made.

pragma If (Complle Time Expression);
pragma Elsif (Compile Time Expression);
pragma Else;

pragma Endif;

These Source directives may be used to enclose conditionally compiled
source to enhance program portability and configuration adaptation. These
directives may occur at the place that language defined pragmas,
statements, or declarations may occur. Source code following these pragmas
will be compiled or ignored similar to the semantics of the corresponding
Ada statements depending upon whether the Compile Time Expression is true
or false, respectively. The primary difference between these pragmas and
the corresponding Ada Statements are that the pragmas may enclose
declarations and other pragmas.

Pragma Interrupt Kind (Entry Name, Entry Type {, Duration });

This pragma must appear in the task specification and must appear after the
Entry Name is declared. Allowed Entry Type are Ordinary, Timed, and
Conditional. The optioral parameter Duration is applicable only to timed

entries and is the time to wait for an accept.

For an Ordinary entry, if the accept is not ready, the task is queried.

APPENDIX F OF THE Ada STANDARD

For a T.med entry, if the accept is not ready, the program waits for the
period of time specified by the Duration. 1If the accept does not become
ready in that period, the interrupt is ignored.

For a

ignored.

Conditional entry, if the accept is not ready, the interrupt is

Pragma Load (literal string);

This pragma makes the compiler include a foreian object (identified by the
literal string) into the link command.

Pragma Monitor;

Pragma

Monitor can eriminate *“asking conteat overhead. The pragma

identifies Ada tasks that obey certain restrictions (listed below:,
allowing efficieat invocation by the c-.iler. With Pragma Monitor, a
simple procedure call is used to invoke task entry.

The pragma only applies to tasks that have the following restrictions:

o

Monitor tasks must only be declared in library level non-generic
packages

Monitor tasks may contain data declarations only within the accept
statement.

A monitor task consists of an infinite loop containing one select
statement.

The "when condition" is not allowed in the select alternative of the
select statement.

The only sclective wait alternative allowed in the select statement is
the accept alternative.

All executable statements of a monitor task must occur within an
accept statement.

Only one accept statement is allowed for each entry declared in the
task specification.

If a task body violates restrictions placed on monitor tasks, it is
identified as erroneous and the compilation fails.

Pragma No Default Initialization;
Pragma Mo Detault Initialization (typename, {, typename ...});

Cc-5

APPENDIX F OF THE Ada STANDARD

The LRM requires initialization of certain data structures even though no
explicit initialization is coded. For example, the LRM requires
access _type objects to have an initial wvalue of "NULL." The
No Default Initialization pragma would prevent this default initialization.

In addition, initialization declared in a type statement is suppressed by
this pragma.

The TLD implementation of packed records or records with representation
clauses includes default initialization of filler bits, i.e., bits within
the allocated size of a variant that are not associated with a rercord
component for the variant. No Default Initialization prevents this default
initialization. - B

No Default Initialization must be placed in the declaration region of the
package, before any declaration that require elaboration code. The pragma
remains in effect until the end of the compilation unit.

Pragma No_Elaboration;

Pragma No Elaboration is used to prevent the generation of elaboration code
for the ~containing scope. The pragma must be placed in the declaration
region of the affected scope before any declaration that would otherwise
produce elaboration code.

Pragma No Elaboration prevents otherwise unnecessary initialization of
packages that are initialized by other non-Ada operations. Examples are
ROM data and Read Time Kernel initialization. It is used to maintain the
TLD Run Time Library (TLDrtl) and is not intended for general use.

Pragma TCB Extension (value);

This Pragma is used to extend the size of the Task Cor.trol Block on the
stack. It can be wused only within a task specification. The parameter
passed to this program must be static and represents the size to be
extended in bytes.

Pragma Within Page (type name);
Pragma Within Page (object name);

This pragma instructs the compiler to allocate the specified object, or
each object of the specified type, as a contiguous block of memory words
that does not span any page boundaries (a page is 4096 words).

The compiler will generate a warning message if the allocation is
noncontiguous or not yet determined. Additionally, the compiler will
generate a warning message if the pragma is in a nonstatic declarative
region. If an object exceeds 4096 words, it will be allocated with an
address at the beginning of a page, but it will span one or more succeeding

C-6

APPENDIX F OF THE Ada STANDARD

page boundaries and a warning message will be produced.

Implementation-Dependent Attributes

Task 11

The Task Id attributes is used only with task objects. This TLD-defined
attributes returns the actual system address of the task object.

Specification of Package SYSTEM

Package SYSTEM

The following declarations are defined in package system:

type operating system is (unix, netos, vms, os_x, msdos, bare };

type name is (none, nsl6000, vax, afl750, 28002, 28001, gould,
pdpll, m68000, pe3200, caps, amdahl, i8086, 180286, 180386,
280000, ns32000, ibmsl, m68020, nebula, name x, hp);

system name: constant name := name'target;
Os_name: constant operating system := operating system’system;

subtype priority is integer range 1..16#3EFF#; — 1 is default priority.
subtype interrupt priority is integer range 16#3FF04#..1643FFF#;

pragma put line (’>', '>', '>', ' ', system name,
14 l' '/I' [4 I' OS__name, r r' I<" I<l’ l<f);

type address is range 0 .. 65535;
for address’size use 16;

type unsigned is range 0 .. 65535;
for unsigned’size use 16;

type long address is range 0..16#007FFFFF#; —— 23 bit physical address
- for GVsC

— Language Defined Constants _

storage unit: constant := 16;

memory size: constant := 65536;

min int: constant := -2%*%*31;

max_int: constant := 2%*31-1;

max_digits: constant := 9;

max mantissa: constant := 31;

fine delta: constant := 2.0%*(-31);

tick: constant := 1.0,/10 000.0; - Clock ticks = 100 msecs.
rte " ps: constant := 10 000;

min delay: constant := rtc_tps * tick; -- Minimum value of ADA delay

Cc-7

APPENDIX F OF THE Ada STANDARD

address O: constant address := 0; -— Zero address

Restrictions on Representation Clauses

Enumeration representation clauses are supported for value ranges of
Integer’First to Integer’Last.

Record representation clauses are supported to arrange record components
within a record. Record components may not be specified to cross a word
boundary unless they are arranged to encompass two or more whele words. A
record component of type record that has itself been "rep specificationed"
may only be allocated at bit 0. Bits are numbered from left to right with
bit 0 indicating the sign bit.

The alignment clause is not supported.

Address clauses are supported for variable objects and designate the
virtual address of the object. The TLD Ada Compiler System treats the
address specification as a means to access objects allocated by other than
Ada means and accordingly does not treat the clause as a request to
allocate the object at the indicated address.

Address clauses are not supported for constant objects, packages, tasks, or
task entries.

Implementation-Dependent Names

The TLD Ada Compiler System defines no implementation dependent names for
compiler generated components.

Interpretations of Expressions in Address Clauses

Address expression values and type Address represent a location in logical
memory (in the program’s current address state). For objects, the address
specifies a location within the 64K word logical operand space. The
'Address attribute applied to a subprogram represents a 16 bit word address
within the logical instruction space.

Restrictions on Unchecked Conversion

Conversion of dynamically sized objects are not allowed.

1/0 Package Characteristics

APPENDIX F OF THE Ada STANDARD

The following implementation-defined types are declared in Text Io.
subtype Count is integer range 0 .. 511;

subtype Field is Integer range 0 .. 127;

Package Standard
The implementation-defined types of package Standard are:
type Integer is range -32 768 .. 32 767;
type Long Integer is range -2 147 483 648 .. 2 147 483 647;
type Float is digits 6 range -170%2.0*+127 ., 0.399999*270**127;
type Long Float is digits 9 range -1.0*2.0**127 .. 0.999999999*2.0%*127;
type Duration is delta 2.0#*(-14) range -86_400.0 .. 86_400.0;
Other System Dependencies

LRM Chapter 1.

None.

LRM Chapter 2.

Maximum source line length —— 120 characters.

Source line terminator -~ Determined by the Editor used.
Maximum name length — 120 characters.

External representation of name characters.

Maximum String literal — 120 characters.

LRM Chapter 3.

LRM defined pragmas are recognized and processed as follows:
Controlled — Has no effect.
Elaborate — As described in the LRM.

Inline -- Not presently sﬁpported.

Interface — Supported as a means of importing foreign language
components into the Ada Program Library. May be applied either to a
subprogram declaration as being specially implemented, -- read

Interface as Import —, or to an object that has been declared
elsewhere. Interface languages supported are System for producing a
call obeying the standard calling conventions except that the BEX
instruction is used to cause a software interrupt into the kernel

c-9

APPENDIX F OF THE Ada STANDARD

supervisor mode; Assembly for calling assembly language routines; and
Mil-Std-1750A for defining built 1in instruction procedures. An
optional third parameter is used to define a name other than the name
of the Ada subprogram for interfacing with the linker.

List — As defined in the LRM.

Memory Size —- Has no effect,

Optimize -- Has no effect. Optimization controlled by compiler
command option.

Pack —— Has no effect.

Page -- As defined in the LRM.

Priority -- As defined in the LRM. Priority may range from 0 to
16366. Default priority is 1.

Shared -~ As defined in the LRM. May be applied to scalar objects
only.

Storage Unit —- Has no effect.

Suppress -— As defined in the LRM for suppressing checks; all standard
checks may be suppressed individually as well as "Exception Info" and
"All Checks". Suppression of Exception Info eliminates data used to
provide symbolic debug information in the event of an unhandled
exception. The All Checks selection eliminates all checks with a
single pragma. In addition to the pragma, the compiler permits
control of check suppression by command line option without the
necessity of source changes,

System Name —-- Has no effect.

Number declarations are not assigned addresses and their names are not
permitted as a prefix to the 'address attribute. (Clarification only).

Objects are allocated by the compiler to occupy one or more 16 bit 1750a
words. Only in the presence record representation clauses are objects
allocated to less than a word.

Except for access objects, .uninitialized objects contain an undefined
value. An attempt to reference the value of an uninitialized object is not
detected.

The maximum number of enumeration literals of all types is limited only by
available symbol table space.

The predefined integer types are:

Integer range -32 768 .. 32 767 and is implemented as a 1750A single

Cc-10

APPENDIX F OF THE Ada STANDARD

precision fixed point data.

Long_Integer range -2 147 483 648 .. 2 147 483 647 and implemented
as 1750A double precision data. -7

Short Integer is not supported.

System.Min Int is -2 147 483 648.

System.Max_Int is 2 T47 483 647.

The predefined real types are:

Float digits 6.

Long Float digits 15.

Short Float is not presently supported.

System.Max Digits is presently 9 and is implemented as 1750A 48-bit
floating point data.

Fixed point is implemented as 1750A single and dcuble precision data as is
appropriate for the range and delta.

On the 1750A, index constraints as well as other address values such as
access types are limited to an unsigned range of 0 .. 65 536 or a signed
range of -32 768 .. 32 _767.

The maximum array size is limited to the size of virtual memory —- 64K
words.

The maximum String length is the same as for other arrays.

Access objects are implemented as an unsigned 16 bit 1750A integer. The
access literal Null is implemented as one word of zero on the 1750A.

There 1is no limit on the number of dimensions of an array type. Array
types are passed as parameters opposite unconstrained formal parameters
using a 3 word dope vector illustrated below:

| Word address of first element f
| Low bound value of first dimension |
| Upper bound value of first dimension |

Additional dimension bounds - follow immediately for arrays with more than
one dimension.

LRM Chapter 4.

Machine Overflows is True for the 1750A,

Pragma Controlled has no effect for the TLD VAX/1750A Compiler since
garbage collection is never performed.

C-11

APPENDIX F OF THE Ada STANDARD

LRM Chapter 5.

The maximum number of statements in an Ada source program is undefined and
limited only by the Symbol Table space.

Case statements unless they are quite sparse, are allowed as indexed jump
vectors and are, therefore, quite fast.

Loop statements with a for implementation scheme are implemented most
efficiently on the 1750A if the range is in reverse and down to zero.

Daca declared in block statements on the 1750A is elaborated as part of its
containing scope.

LRM Chapter 6.

Arrays, records and task types are passed on the 1750A by reference.
Pragma Inline is not presently supported for subprograms.

LRM Chapter 7.

Package elaboration is performed dynamically permitting a warm restart
without the necessity to reload the program.

LRM Chapter 8.

LRM Chapter 9.

Task objects are implemented as access types pointing to a Task Information
Block (TIB).

Typé Time in package Calendar is declared as a record containing two double
precision integer values: the date in days and the real time clock.

Pragma Priority is supported with a value of 1 to 16366.
Pragma Shared is supported for scalar objects.

LRM Chapter 10.

Multiple Ada Program Libraries are supported with each library containing
an optional ancester library. _The predefined packages are contained in the
TLD standard library, ADA.LIB.

LRM Chapter 11.

Exceptions are implemented by the TLD Ada Compiler System to take advantage
of the normal policy in embedded computer system design to reserve 50% of
the duty cycle. By executing a small number of instructions in the
prologue of a procedure or block containing an exception handler, a branch
may be taken, at the occurance of an exception, directly to a handler

c-12

B

4

APPENDIX F OF THE Ada STANDARD

rather than performing the time consuming code of unwinding procedure calls
and stack frames. The philosophy taken is that an exception signals an
exceptional condition, perhaps a serious one involving recovery or
reconfiguration, and that quick response in this situation 1is more
important and worth the small throughput tradeoff in a real time
environment.

LRM Chapter 12.

A single generic instance is generated for a generic body. Generic
specifications and bodies need not be compiled together nor need a body be
compiled prior to the compilation of an instantiation. Because of the
single expansion, this implementation of generics tend to be more favorable
on the 1750A because of wusual space savings achieved. To achieve this
tradeoff, the instantiations must by nature be more general and are,
therefore, somewhat less efficient timewise.

LRM Chapter 13.

Representation clause support and restrictions are defined above.
A comprehensive Machine Code package is provided and supported.
Unchecked Deallocation and Unchecked Conversion are supported.

The implementation dependent attributes are all supported except
'Storage_Size for an access type.

LRM Chapter 14.

Full file I/0 operations are not supported for the 1750A. Text Io and
Low Level Io are supported.

Cc-13

